JAMA Open

Original Investigation | Infectious Diseases

Global Percentage of Asymptomatic SARS-CoV-2 Infections Among the Tested Population and Individuals With Confirmed COVID-19 Diagnosis A Systematic Review and Meta-analysis

Qiuyue Ma, PhD; Jue Liu, PhD; Qiao Liu, BD; Liangyu Kang, BD; Runqing Liu, BD; Wenzhan Jing, PhD; Yu Wu, MD; Min Liu, PhD

Abstract

IMPORTANCE Asymptomatic infections are potential sources of transmission for COVID-19.

OBJECTIVE To evaluate the percentage of asymptomatic infections among individuals undergoing testing (tested population) and those with confirmed COVID-19 (confirmed population).

DATA SOURCES PubMed, EMBASE, and ScienceDirect were searched on February 4, 2021.

STUDY SELECTION Cross-sectional studies, cohort studies, case series studies, and case series on transmission reporting the number of asymptomatic infections among the tested and confirmed COVID-19 populations that were published in Chinese or English were included.

DATA EXTRACTION AND SYNTHESIS This meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. Random-effects models were used to estimate the pooled percentage and its 95% CI. Three researchers performed the data extraction independently.

MAIN OUTCOMES AND MEASURES The percentage of asymptomatic infections among the tested and confirmed populations.

RESULTS Ninety-five unique eligible studies were included, covering 29776 306 individuals undergoing testing. The pooled percentage of asymptomatic infections among the tested population was 0.25% (95% CI, 0.23%-0.27%), which was higher in nursing home residents or staff (4.52% [95% CI, 4.15%-4.89%]), air or cruise travelers (2.02% [95% CI, 1.66%-2.38%]), and pregnant women (2.34% [95% CI, 1.89%-2.78%]). The pooled percentage of asymptomatic infections among the confirmed population was 40.50% (95% CI, 33.50%-47.50%), which was higher in pregnant women (54.11% [95% CI, 39.16%-69.05%]), air or cruise travelers (52.91% [95% CI, 36.08%-69.73%]), and nursing home residents or staff (47.53% [95% CI, 36.36%-58.70%]).

CONCLUSIONS AND RELEVANCE In this meta-analysis of the percentage of asymptomatic SARS-CoV-2 infections among populations tested for and with confirmed COVID-19, the pooled percentage of asymptomatic infections was 0.25% among the tested population and 40.50% among the confirmed population. The high percentage of asymptomatic infections highlights the potential transmission risk of asymptomatic infections in communities.

JAMA Network Open. 2021;4(12):e2137257. doi:10.1001/jamanetworkopen.2021.37257

Key Points

Question What is the percentage of asymptomatic individuals with positive test results for SARS-CoV-2 among tested individuals and those with confirmed COVID-19 diagnosis?

Findings In this systematic review and meta-analysis of 95 unique studies with 29 776 306 individuals undergoing testing, the pooled percentage of asymptomatic infections was 0.25% among the tested population and 40.50% among the population with confirmed COVID-19.

Meaning The high percentage of asymptomatic infections from this study highlights the potential transmission risk of asymptomatic infections in communities.

Supplemental content

Author affiliations and article information are listed at the end of this article.

Open Access. This is an open access article distributed under the terms of the CC-BY License.

Introduction

COVID-19, the disease caused by SARS-CoV-2, was first reported in December 2019.¹ Globally, as of January 28, 2021, there have been 100 455 529 confirmed cases, including 2 166 440 deaths.² The disease course of COVID-19 ranges from asymptomatic to mild respiratory infections to pneumonia and even to acute respiratory distress syndrome.³ Patients with no symptoms at screening point were defined as having asymptomatic infections, which included infected people who have not yet developed symptoms but go on to develop symptoms later (presymptomatic infections), and those who are infected but never develop any symptoms (true asymptomatic or covert infections).^{4,5} Owing to the absence of symptoms, these patients would not seek medical care and could not be detected by temperature screening. Presymptomatic transmission will also make temperature screening less effective.⁶ Only extensive testing and close contact tracing could lead to identification of more asymptomatic infections.⁷

Unlike SARS, which had little known transmission from asymptomatic patients, evidence showed that asymptomatic patients were a potential source of transmission of COVID-19.^{3,6} A previous study⁸ showed that the upper respiratory viral loads in asymptomatic patients were comparable to those in symptomatic patients. Meanwhile, the highest viral load in throat swabs at the time of symptom onset indicated that infectiousness peaked on or before symptom onset.⁹ Moreover, studies showed that asymptomatic infections might have contributed to transmission among households, nursing facilities, and clusters.¹⁰⁻¹³ As the pandemic has been contained in many countries and regions, travel restrictions have been lifted and public places have reopened. Asymptomatic infections should be considered a source of COVID-19 infections that play an important role in the spread of the virus within community as public life gradually returns to normal. The management of asymptomatic carriers was essential for preventing cluster outbreaks and transmission within a community.

However, comprehensive evaluation of the percentage of asymptomatic infections among the tested population and the population with confirmed COVID-19 (confirmed population) is limited. Current results from different studies^{3,5,7,8,10,11} varied considerably owing to different study design and study population. Thus, we conducted a meta-analysis to better understand the global percentage of asymptomatic infections among the tested and confirmed COVID-19 populations. Our results could be useful for strategies to reduce transmission by asymptomatic infections.

Methods

Search Strategy

We conducted the meta-analysis following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. This review was not registered. Three researchers (Q.L., L.K., and R.L.) searched the published studies on February 4, 2021, through PubMed, EMBASE, and ScienceDirect without language restriction. The search terms used included *COVID-19, coronavirus, SARS-CoV-2, asymptomatic transmission, asymptomatic infection, asymptomatic proportion, asymptomatic case, asymptomatic cases, asymptomatic contact, asymptomatic ratio, asymptomatic people, asymptomatic patients, and asymptomatic patient. The detailed search strategies are shown in eMethods 1 in the Supplement. Three researchers (Q.L., L.K., and R.L.) reviewed the titles, abstracts, and full texts of articles independently and identified additional studies from the reference lists. Disagreements were resolved by 2 other reviewers (W.J. and Y.W.).*

Selection Criteria

Asymptomatic individuals with positive test results for SARS-CoV-2 (asymptomatic infections) were defined as those who did not present any symptoms at the time of SARS-CoV-2 testing or diagnosis.¹⁴ Individuals with a confirmed COVID-19 diagnosis were defined as those who had a throat swab or other specimen with positive results for SARS-CoV-2 using a real-time reverse-transcription

polymerase chain reaction assay. Inclusion criteria consisted of (1) studies reporting the number of asymptomatic infections, tested population, and confirmed population and (2) cross-sectional studies, cohort studies, case series studies, and case series on transmission. Exclusion criteria consisted of (1) reviews, systematic reviews, and meta-analysis; (2) duplicate publications; (3) preprints; (4) multiple studies reporting on overlapping participants (the study with more information was included); (5) articles with ambiguous definition of asymptomatic infections; and (6) articles not written in English or Chinese.

Data Extraction and Quality Assessment

Three researchers (Q.L., L.K., and R.L.) performed the data extraction independently. Data were extracted for the first author, date of publication, study location, number of tested individuals, number of individuals with confirmed COVID-19, and number of asymptomatic infections. The ratio of male to female individuals (MFR) and mean age of study participants were gathered if available. The quality of studies included in the meta-analysis was assessed using the Joanna Briggs Institute Prevalence Critical Appraisal Tool¹⁵ for cross-sectional studies and the Newcastle-Ottawa scale¹⁶ for cohort studies (eMethods 2 in the Supplement). Case series on transmission were assessed using the quality assessment tool developed by Yanes-Lane et al.¹⁷ Two researchers (Q.L. and L.K.) performed the quality assessment independently. Disagreements were resolved by 2 other reviewers (W.J. and Y.W.). Outcomes of interest included the percentages of asymptomatic infections among the tested and the confirmed populations.

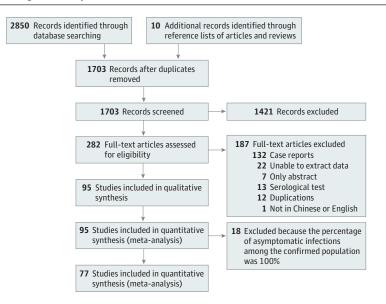
Statistical Analysis

We performed a meta-analysis to estimate the pooled percentage of asymptomatic infections among the tested and confirmed populations. Untransformed percentages and DerSimonian and Laird random-effects models¹⁸ were used to calculate the pooled percentage and its 95% CI. The heterogeneity among studies was assessed using l^2 values.¹⁹ We performed subgroup analyses by study location (Africa, Asia, Europe, North America, and South America), countries' development level (developed vs developing), study population (air or cruise travelers, close contact, community residents, health care workers or in-hospital patients, nursing home residents or staff, and pregnant women), publication period (June 2020 and earlier vs July 2020 and later), sample size for the tested population (1-99, 100-999, 1000-9999, and \geq 10 000), sample size for the confirmed population (1-99, 100-499, and ≥500), study design (case series, case series on transmission, cohort studies, and cross-sectional studies), study quality (low, moderate, and high), MFR (0 to <0.5, 0.5 to <1.0, 1.0 to <1.5, and \geq 1.5), and mean age (<20, 20-39, 40-59, and \geq 60 years). Publication bias was assessed by funnel plot and the Egger regression test.²⁰ We performed 3 sensitivity analyses to test the robustness of our results, by using the Knapp-Hartung adjustments²¹ to calculate the 95% Cls around the pooled effects, by excluding 3 studies with a tested population more than 200 000 and studies with low quality. Two-sided P < .05 indicated statistical significance. All analyses were performed using R, version 4.0.0 (R Project for Statistical Computing).

Results

We identified 2860 studies through database search and the reference lists of articles and reviews. Of these, 282 studies underwent full-text review. Ninety-five studies with information concerning the percentage of asymptomatic infections among the tested and confirmed populations were included in the final analysis^{12,22-115} (**Figure 1**).

Among these studies, 44 (46.32%) were cross-sectional studies, 41 (43.16%) were cohort studies, 7 (7.37%) were case series, and 3 (3.16%) were case series on transmission studies. Thirty-five studies (36.84%) were conducted in Europe; 32 (33.68%), in North America; and 25 (26.32%), in Asia. Seventy-four studies (77.89%) were conducted in developed countries. Thirty-seven studies (38.95%) were conducted among health care workers or in-hospital patients; 17 (17.89%), among


nursing home residents or staff; 14 (14.74%), among community residents; 13 (13.68%), among pregnant women; 8 (8.42%), among air or cruise travelers; and 6 (6.32%), among close contacts. Twenty-one studies (22.11%) were published in June or before; 74 (77.89%), in July and after. Forty-nine studies (51.58%) had sample size of 100 to 1000. Fifty-three studies (55.79%) were assessed as low quality; 17 (17.89%), high quality; and 25 (26.32%), moderate quality (**Table**). For cross-sectional studies, low-quality studies were mostly those without random sampling or with 2 or more biases (selection bias, reporting bias, or detection bias). For cohort studies, low-quality studies were mostly those with 1 or more biases.

Percentage of Asymptomatic Infections Among the Tested Population

Ninety-five studies were included in the meta-analysis for the percentage of asymptomatic infections among the tested population, covering 29 776 306 tested individuals, among whom 11 516 had asymptomatic infections. The pooled percentage of asymptomatic infections among the tested population was 0.25% (95% CI, 0.23%-0.27%), with high heterogeneity among studies ($l^2 = 99\%$; P < .001) (eFigure 1 in the Supplement).

Among tested individuals in different study populations, the pooled percentage of asymptomatic infections was 4.52% (95% CI, 4.15%-4.89%) in nursing home residents or staff, 2.02% (95% CI, 1.66%-2.38%) in air or cruise travelers, 2.34% (95% CI, 1.89%-2.78%) in pregnant women, 1.46% (95% CI, 1.05%-1.88%) in close contacts, 0.75% (95% CI, 0.60%-0.90%) in health care workers or in-hospital patients, and 0.40% (95% CI, 0.18%-0.62%) in community residents. The pooled percentage of asymptomatic infections was 0.90% (95% CI, 0.87%-0.93%) in Europe, 0.47% (95% CI, 0.39%-0.54%) in North America, and 0.05% (95% CI, 0.04%-0.07%) in Asia. The pooled percentage was higher in developed countries (0.70% [95% CI, 0.67%-0.73%]), studies published in July or later (0.29% [95% CI, 0.27%-0.31%]), studies with a sample size of less than 100 (6.74% [95% CI, 4.69%-8.80%]), and cohort studies (2.98% [95% CI, 2.68%-3.29%]). In studies with MFR of 0.5 to less than 1.0, the pooled percentage was higher (3.91%; [95% CI, 3.14%-4.68%]). The pooled percentage was higher when the mean age of the study population was 60 years or older (3.69% [95% CI, 2.99%-4.39%]) (**Figure 2**).

Figure 1. Flow Diagram of Study Selection

🖞 JAMA Network Open. 2021;4(12):e2137257. doi:10.1001/jamanetworkopen.2021.37257

Table. Characteristics of the Studies Included for Meta-analysis

Source	Country	Study design	Time of publication	Population group	No. tested individuals	No. confirmed individuals	No. asymptomatic infections	Quality
Abdelmoniem et al ²²	Egypt	Cross-sectional	January 2020	Health care workers or in-hospital patients	203	29	29	Low
Abeysuriya et al ²³	UK	Cross-sectional	September 2020	Pregnant women	180	7	6	Low
Akbarialiabad et al ²⁴	Iran	Cross-sectional	September 2020	Health care workers or in-hospital patients	1805	86	19	Low
Al-Qahtani et al ²⁵	Kingdom of Bahrain	Cohort	November 2020	Air or cruise travelers	2714	188	116	High
Al-Shamsi et al ²⁶	United Arab Emirates	Cohort	November 2020	Health care workers or in-hospital patients	109	32	6	Low
Arnold et al ²⁷	US	Cross-sectional	January 2021	Health care workers or/in- hospital patients	2882	103	38	Moderate
Arons et al ¹²	US	Cross-sectional	April 2020	Nursing home residents or staff	76	48	27	Moderate
Aslam et al ²⁸	US	Cohort	January 2020	Health care workers or in-hospital patients	11622	69	42	Low
Bayle et al ²⁹	France	Cross-sectional	January 2021	Nursing home residents or staff	241	32	24	Moderate
Bender et al ³⁰	US	Cohort	September 2020	Pregnant women	318	8	8	Moderate
Bianco et al ³¹	US	Cross-sectional	May 2020	Pregnant women	155	24	24	Low
Blain et al ³²	US	Case series	July 2020	Nursing home residents or staff	113	44	8	Moderate
Blitz et al ³³	US	Cohort	August 2020	Pregnant women	382	71	45	Low
Blumberg et al ³⁴	US	Cohort	October 2020	Health care workers or in-hospital patients	1198	7	6	Low
Bosworth et al ³⁵	UK	Cross-sectional	July 2020	Health care workers or in-hospital patients	1282	53	16	Moderate
Cao et al ³⁶	China	Cross-sectional	November 2020	Community residents	9865404	300	300	High
Carroll et al ³⁷	Ireland	Cohort	October 2020	Close contact	4586	310	209	Moderate
Cattelan et al ³⁸	Italy	Cohort	August 2020	Health care workers or in-hospital patients	7595	395	109	Low
Cloutier et al ³⁹	Canada	Cross-sectional	August 2020	Community residents	330	6	6	Low
Corcorran et al ⁴⁰	US	Cohort	August 2020	Health care workers or in-hospital patients	25	10	4	Low
Deng et al ⁴¹	China	Case series on transmission	October 2020	Close contact	347	27	1	High
Dora et al ⁴²	US	Cross-sectional	May 2020	Nursing home residents or staff	235	27	18	Low
Duan et al ⁴³	China	Cross-sectional	September 2020	Health care workers or/in- hospital patients	4729	4	4	Moderate
Figueiredo et al ⁴⁴	Portugal	Cohort	October 2020	Pregnant women	184	11	9	Low
Goldfarb et al ⁴⁵	US	Cross-sectional	May 2020	Pregnant women	757	20	9	Moderate
Graham et al ⁴⁶	UK	Cross-sectional	September 2020	Nursing home residents or staff	464	129	54	Moderate
Grechukhina et al ⁴⁷	US	Cohort	November 2020	Pregnant women	1567	141	44	High
Gruskay et al ⁴⁸	US	Cohort	June 2020	Health care workers or in-hospital patients	99	12	7	Low
Han et al ⁴⁹	China	Cross-sectional	June 2020	Community residents	29 299	18	18	Low
Harada et al ⁵⁰	Japan	Cohort	December 2020	Health care workers or in-hospital patients	1259	79	33	Low
Hcini et al ⁵¹	France	Cohort	February 2020	Pregnant women	507	137	103	Low
Hoxha et al ⁵²	Belgium	Cross-sectional	July 2020	Nursing home residents or staff	280 427	8325	6244	Moderate
Hung et al ⁵³	China	Case series	September 2020	Air or cruise travelers	215	9	6	High
Ibrahim et al ⁵⁴	Indonesia	Case series	August 2020	Health care workers or in-hospital patients	4617	582	55	Low
Kennelly et al ⁵⁵	Ireland	Cohort	September 2020	Nursing home residents or staff	2968	1105	290	Low
Kessler et al ⁵⁶	Germany	Cross-sectional	December 2020	Health care workers or in-hospital patients	689	1	1	Moderate
Kimball et al ⁵⁷	US	Cross-sectional	April 2020	Nursing home residents or staff	76	23	13	Moderate

(continued)

Table. Characteristics of the Studies Included for Meta-analysis (continued)

Source	Country	Study design	Time of publication	Population group	No. tested individuals	No. confirmed individuals	No. asymptomatic infections	Quality
Kirshblum et al ⁵⁸	US	Cohort	July 2020	Health care workers or in-hospital patients	103	12	12	Low
Krüger et al ⁵⁹	Germany	Cohort	January 2021	Health care workers or in-hospital patients	6940	27	7	Low
Kwon et al ⁶⁰	South Korea	Cross-sectional	July 2020	Health care workers or in-hospital patients	2087	42	6	Low
LaCourse et al ⁶¹	US	Cohort	May 2020	Pregnant women	230	13	1	Low
Ladhani et al ⁶²	UK	Cohort	September 2020	Nursing home residents or staff	518	158	97	High
Lan et al ⁶³	US	Cross-sectional	November 2020	Community residents	104	21	16	Moderat
Lavezzo et al ⁶⁴	Italy	Cross-sectional	July 2020	Community residents	2812	73	29	Moderat
Livingston et al ⁶⁵	UK	Cohort	October 2020	Health care workers or in-hospital patients	344	131	16	Moderat
Lombardi et al ⁶⁶	Italy	Cohort	June 2020	Health care workers or in-hospital patients	1573	139	28	Low
Ly et al ⁶⁷	France	Cross-sectional	November 2020	Nursing home residents or staff	1691	226	46	Moderat
Lytras et al ⁶⁸	Greece	Cross-sectional	April 2020	Air or cruise travelers	783	40	35	Low
Maechler et al ⁶⁹	Germany	Cross-sectional	December 2020	Community residents	4333	333	14	High
Marossy et al ⁷⁰	UK	Cross-sectional	September 2020	Nursing home residents or staff	2455	160	115	Moderate
Marschner et al ⁷¹	Germany	Cross-sectional	July 2020	Health care workers or in-hospital patients	139	1	1	Low
Martinez-Fierro et al ⁷²	Mexico	Cross-sectional	October 2020	Close contact	81	34	5	Low
Massarotti et al ⁷³	Italy	Cross-sectional	August 2020	Pregnant women	333	7	6	Low
Mattar et al ⁷⁴	Caribbean	Cross-sectional	December 2020	Close contact	686	35	18	Low
Menting et al ⁷⁵	Germany	Cross-sectional	January 2020	Health care workers or in-hospital patients	1185	11	2	Low
Migueres et al ⁷⁶	France	Cross-sectional	September 2020	Health care workers or in-hospital patients	123	44	17	Low
Milani et al ⁷⁷	Italy	Cross-sectional	June 2020	Community residents	197	21	21	Moderat
Nishiura et al ⁷⁸	Japan	Cross-sectional	May 2020	Air or cruise travelers	565	13	4	Low
Ochiai et al ⁷⁹	Japan	Cross-sectional	June 2020	Pregnant women	52	2	2	Low
Olalla et al ⁸⁰	Spain	Cross-sectional	August 2020	Health care workers or in-hospital patients	498	2	2	Low
Olmos et al ⁸¹	Chile	Cross-sectional	January 2021	Health care workers or in-hospital patients	413	14	14	Low
Park et al ⁸²	South Korea	Cross-sectional	April 2020	Community residents	1143	97	8	High
Park et al ⁸³	Korea	Cohort	December 2020	Air or cruise travelers	39	30	4	Low
Patel et al ⁸⁴	United States	Cohort	June 2020	Nursing home residents or staff	126	35	14	Low
Pavli et al ⁸⁵	Greece	Case series on transmission	September 2020	Air or cruise travelers	891	5	2	High
Petersen et al ⁸⁶	United Kingdom	Cross-sectional	October 2020	Community residents	36061	115	88	Moderat
Puckett et al ⁸⁷	United States	Cohort	December 2020	Health care workers or in-hospital patients	227	2	2	Low
Ralli et al ⁸⁸	Italy	Cohort	December 2020	Community residents	298	12	9	Low
Rashid-Abdi et al ⁸⁹	Sweden	Cohort	November 2020	Health care workers or in-hospital patients	131	21	1	Low
Ren et al ⁹⁰	China	Cohort	February 2021	Air or cruise travelers	19 398 384	3103	1749	High
Rincón et al ⁹¹	Spain	Cohort	September 2020	Health care workers or in-hospital patients	192	36	14	Low
Roxby et al ⁹²	United States	Cohort	May 2020	Nursing home residents or staff	80	3	2	Low
Sacco et al ⁹³	France	Cohort	November 2020	Nursing home residents or staff	179	63	12	Low
Santos et al ⁹⁴	Portugal	Cross-sectional	December 2020	Health care workers or in-hospital patients	8037	211	47	Low
Scheier et al ⁹⁵	Switzerland	Cross-sectional	February 2021	Health care workers or in-hospital patients	2807	68	8	High

(continued)

Table. Characteristics of the Studies Included for Meta-analysis (continued)

Source	Country	Study design	Time of publication	Population group	No. tested individuals	No. confirmed individuals	No. asymptomatic infections	Quality
Shah et al ⁹⁶	US	Case series	July 2020	Health care workers or in-hospital patients	625	1	1	Low
Shi et al ⁹⁷	US	Cohort	October 2020	Nursing home residents or staff	389	146	66	Moderate
Singer et al ⁹⁸	US	Case series	October 2020	Health care workers or in-hospital patients	4751	18	10	High
Tang et al ⁹⁹	China	Cross-sectional	July 2020	Health care workers or in-hospital patients	1027	52	13	High
Tang et al ¹⁰⁰	US	Cohort	November 2020	Nursing home residents or staff	1970	752	424	High
Temkin et al ¹⁰¹	Israel	Cross-sectional	October 2020	Health care workers or in-hospital patients	522	1	1	Low
Trahan et al ¹⁰²	Canada	Cohort	November 2020	Pregnant women	803	41	11	Low
Tsou et al ¹⁰³	China	Case series	November 2020	Community residents	17 935	100	10	Moderate
van Buul et al ¹⁰⁴	The Netherlands	Cohort	Decem ber 2020	Nursing home residents or staff	839	25	6	High
Varnell et al ¹⁰⁵	US	Cohort	January 2021	Health care workers or in-hospital patients	281	24	9	Moderate
Wadhwa et al ¹⁰⁶	US	Cohort	December 2020	Community residents	172	19	12	Moderate
Wi et al ¹⁰⁷	South Korea	Case series	July 2020	Community residents	17 400	111	25	High
Wood et al ¹⁰⁸	Indiana	Cross-sectional	August 2020	Community residents	511	1	1	Low
Yamahata et al ¹⁰⁹	Japan	Cross-sectional	May 2020	Air or cruise travelers	3711	696	410	Moderate
Yassa et al ¹¹⁰	Turkey	Cohort	July 2020	Pregnant women	296	23	12	Low
Yau et al ¹¹¹	Canada	Cohort	July 2020	Health care workers or in-hospital patients	330	22	12	Low
Yousaf et al ¹¹²	US	Cohort	July 2020	Close contact	195	47	6	Low
Zhang et al ¹¹³	China	Case series on transmission	April 2020	Close contact	8437	25	3	High
Zhang et al ¹¹⁴	China	Cohort	September 2020	Health care workers or in-hospital patients	8553	235	21	Low
Zhao et al ¹¹⁵	China	Cohort	August 2020	Health care workers or in-hospital patients	1060	160	38	Low

Percentage of Asymptomatic Infections Among the Confirmed Population

Among 95 studies, 18 were excluded because that the percentage of asymptomatic infections among the confirmed population was 100%.^{22,30,31,36,39,43,49,56,58,71,77,79-81,87,96,101,108} The remaining 77 studies were included in the meta-analysis for the percentage of asymptomatic infections among the confirmed population, ^{12,23-29,32-35,37,38,40-42,44-48,50-55,57,59-70,72-76,78,82-86,88-95,97-100,102-107,109-115} covering 19 884 individuals with confirmed COVID-19, among whom 11 069 had asymptomatic infections. The pooled percentage of asymptomatic infections among the confirmed population was 40.50% (95% CI, 33.50%-47.50%), with high heterogeneity among studies ($l^2 = 99\%$; P < .001) (eFigure 2 in the Supplement).

Among the confirmed population, the pooled percentage of asymptomatic infections was 54.11% (95% CI, 39.16%-69.05%) in pregnant women, 52.91% (95% CI, 36.08%-69.73%) in air or cruise travelers, 47.53% (95% CI, 36.36%-58.70%) in nursing home residents or staff, 39.74% (95% CI, 24.50%-54.98%) in community residents, 30.01% (95% CI, 21.13%-38.88%) in health care workers or in-hospital patients, and 26.94% (95% CI, 8.50%-45.38%) in close contacts. The pooled percentage of asymptomatic infections was 46.32% (95% CI, 33.47%-59.16%) in North America, 44.18% (95% CI, 32.87%-55.50%) in Europe, and 27.58% (95% CI, 13.60%-41.57%) in Asia. The pooled percentage was higher in developed countries (43.51% [95% CI, 35.59%-51.44%]), studies published in June or earlier (43.68% [95% CI, 27.87%-59.50%]), studies with sample size of 500 or greater (47.06% [95% CI, 26.22%-67.90%]), and cross-sectional studies (44.47% [95% CI, 33.54%-55.40%]). The pooled percentage was slightly lower for cohort studies (40.96% [95% CI, 31.18%-50.74%]). Among studies with MFR of 1.0 to less than 1.5, the pooled percentage was higher (55.09% [95% CI, 27.64%-82.53%]). The pooled percentage was higher when the mean age of the

study population was younger than 20 years (60.21% [95% CI, 24.51%-95.91%]) or 20 to 39 years (49.49% [95% CI, 33.48%-65.50%]) (**Figure 3**).

Sensitivity Analysis and Publication Bias

After using the Knapp-Hartung adjustments, the pooled percentage of asymptomatic infections among the tested population was 0.25% (95% CI, 0.11%-0.39%), and the 95% CI of the pooled percentage became slightly larger (eFigure 3 in the Supplement). The percentage of asymptomatic

Subgroup	No. of studies	Percentage (95% CI)		I ² value, %	P value	Weight %
Location						
Africa	1	14.29 (9.47-19.10)		NA	NA	0
Asia	25	0.05 (0.04-0.07)		98	<.001	79.3
Europe	35	0.90 (0.87-0.93)		99	<.001	17.3
North America	32	0.47 (0.39-0.54)		97	<.001	3.4
South America	2	2.87 (1.88-3.86)		0	.48	0
Development level						
Developed	74	0.70 (0.67-0.73)		99	<.001	27.0
Developing	21	0.04 (0.03-0.06)		98	<.001	73.0
Study population						
Air/cruise travel	8	2.02 (1.66-2.38)	•	99	<.001	8.6
Close contact	6	1.46 (1.05-1.88)	-	98	<.001	6.4
Community residents	14	0.40 (0.18-0.62)	÷	95	<.001	22.3
Health care workers/ in-hospital patients	37	0.75 (0.60-0.90)	•	92	<.001	49.0
Nursing home residents/staff	17	4.52 (4.15-4.89)		98	<.001	8.0
Pregnant women	13	2.34 (1.89-2.78)	-	94	<.001	5.7
Publication period						
June and before	21	0.09 (0.05-0.13)		98	<.001	20.3
July and after	74	0.29 (0.27-0.31)		99	<.001	79.7
Sample size						
1 to <100	8	6.74 (4.69-8.80)		84	<.001	0
100 to <1000	49	0.69 (0.57-0.80)	•	94	<.001	1.8
1000 to <10000	30	0.27 (0.24-0.30)	÷	99	<.001	23.4
≥10000	8	0.23 (0.21-0.25)		100	<.001	74.8
Study design						
Case series	7	0.55 (0.00-1.11)	-	92	<.001	10.1
Case series on transmission	3	0.18 (0.00-0.94)	÷-	7	.34	5.4
Cohort studies	41	2.98 (2.68-3.29)		98	<.001	34.1
Cross-sectional studies	44	1.55 (1.30-1.80)		99	<.001	50.4
Study quality						
Low	53	0.22 (0.19-0.25)		95	<.001	21.6
Moderate	25	0.64 (0.61-0.67)		100	<.001	24.5
High	17	0.05 (0.03-0.07)		99	<.001	54.0
Male to female ratio						
0 to <0.5	23	2.71 (2.08-3.35)	-	94	<.001	48.5
0.5 to <1.0	18	3.91 (3.14-4.68)		98	<.001	32.7
1.0 to <1.5	6	2.26 (0.92-3.60)		96	<.001	10.8
≥1.5	4	1.40 (0.00-2.96)	-	89	<.001	7.9
Average age, y <20	2	1.27 (0.00-2.65)		85	.012	7.8
20-39	12	2.42 (1.72-3.12)		94	<.001	30.4
40-59	7	0.84 (0.15-1.52)		92	<.001	31.5
≥60	10	3.69 (2.99-4.39)	-	99	<.001	30.3
			-			
Combined percentage	95	0.25 (0.23-0.27)		99	<.001	100.0

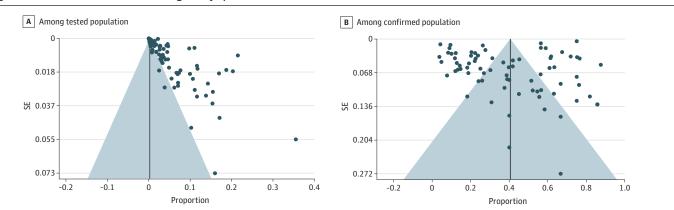
Includes 29 776 306 tested individuals, among whom 11 516 had asymptomatic infections.

infections among the confirmed population was 40.50% (95% Cl, 34.94%-46.07%), and the 95% Cl of the pooled percentage became slightly narrower (eFigure 4 in the Supplement).

After excluding 3 studies with tested populations of more than 200 000,^{36,52,90} the pooled percentage of asymptomatic infections among the tested population was 1.61% (95% CI, 1.47%-1.76%), which was higher than the original results. The percentage of asymptomatic infections among the confirmed population was 39.37% (95% CI, 33.86%-44.87%), which was slightly lower than the original results. After excluding 53 low-quality studies, the pooled percentage of asymptomatic infections among the tested population was 0.24% (95% CI, 0.23%-0.26%), and the percentage of asymptomatic infections among the confirmed population was 41.71% (95% CI, 31.89%-51.53%). Both percentages were similar to the original results.

Figure 3. Percentage of Asymptomatic Infections Among the Confirmed Population by Subgroups

Subgroup	No. of studies	Percentage (95% CI)		I ² value, %	P value	Weight %
Location						
Asia	20	27.58 (13.60-41.57)		99	<.001	26.6
Europe	31	44.18 (32.87-55.50)		99	<.001	40.6
North America	25	46.32 (33.47-59.16)		90	<.001	31.5
South America	1	51.43 (0.00-100.00)		NA	NA	1.3
Development level Developed	62	43.51 (35.59-51.44)	-	99	<.001	80.1
Developing	15	28.46 (12.56-44.37)	_	99	<.001	19.9
Study population Air/cruise travel	8	52.91 (36.08-69.73)		92	<.001	9.8
Close contact	6	26.94 (8.50-45.38)		98	<.001	8.2
Community residents	9	39.74 (24.50-54.98)		98	<.001	12.0
Health care workers/ in-hospital patients	27	30.01 (21.13-38.88)		91	<.001	35.3
Nursing home residents/staff	17	47.53 (36.36-58.70)		99	<.001	22.3
Pregnant women	10	54.11 (39.16-69.05		94	<.001	12.4
Publication period						
June and before	16	43.68 (27.87-59.50)		97	<.001	20.1
July and after	61	39.72 (31.78-47.66)		99	<.001	79.9
Sample size						
1 to <100	51	40.86 (33.27-48.46)		92	<.001	63.7
100 to <500	20	36.98 (25.48-48.47)		99	<.001	27.8
≥500	6	47.06 (26.22-67.90)		100	<.001	8.5
Study design						
Case series	6	28.52 (3.87-53.16)		87	<.001	7.8
Case series on transmission	3	15.85 (0.00-52.04)		45	.16	3.6
Cohort studies	38	40.96 (31.18-50.74)		98	<.001	49.2
Cross-sectional studies	30	44.47 (33.54-55.40)		99	<.001	39.4
Study quality						
Low	40	38.93 (30.79-47.07)		95	<.001	50.9
Moderate	21	48.06 (37.10-59.02)		99	<.001	28.1
High	16	32.94 (20.24-45.63)	_	99	<.001	20.9
Male to female ratio						
0 to <0.5	21	41.27 (29.53-53.00)		96	<.001	50.8
0.5 to <1.0	12	31.29 (16.12-46.45)		98	<.001	30.4
1.0 to <1.5	4	55.09 (27.64-82.53)		97	<.001	9.3
≥1.5	4	39.98 (12.97-66.99)		90	<.001	9.6
	-	,				
Average age, y <20	2	60.21 (24.51-95.91)		88	.004	7.5
20-39	2	49.49 (33.48-65.50)		98	.004 <.001	37.3
40-59	5	32.48 (11.63-53.34)		88	<.001	22.0
40-59 ≥60	5	33.83 (16.83-50.82)		88 97	<.001 <.001	22.0 33.1
200	0		-			
Combined percentage	77	40.50 (33.50-47.50)		99	<.001	100.0
			0 25 50 75 100 Percentage (95% CI)			


Includes 19 884 individuals with confirmed COVID-19, among whom 11 069 had asymptomatic infections.

Funnel plots are shown in **Figure 4**. Egger regression tests for the percentage of asymptomatic infections among the tested population (z = 43.1725; P < .001) and for the percentage of asymptomatic infections among the confirmed population (z = 2.3846; P = .02) indicated that there might be publication bias.

Discussion

In this meta-analysis, we found that the pooled percentage of asymptomatic infections among the tested population was 0.25% (95% CI, 0.23%-0.27%), and the pooled percentage of asymptomatic infections among the confirmed population was 40.50% (95% CI, 33.50%-47.50%). At present, there are only a few meta-analyses for the percentage of asymptomatic infections among the tested population. We found that the percentage of asymptomatic infections was highest among the tested population in nursing homes and lowest among community residents. Because the percentage of asymptomatic individuals varies as a function of community prevalence, it was not available in all studies. This might be a potential driver of heterogeneity across studies. Furthermore, the percentages of asymptomatic infections among the tested population were different between studies conducted in different locations. Studies in Asia had the lowest percentage, whereas studies in other locations had higher percentages. This lower percentage in Asia might be related to the large city-wide SARS-CoV-2 nucleic acid screening program in China.³⁶ In the sensitivity analyses, we found that the pooled percentage of asymptomatic infections among the tested population was higher than the original results after excluding studies with large sample sizes. This indicated that studies with different sample sizes were very heterogeneous. Owing to severe outcomes among older patients with COVID-19, more studies were conducted among nursing home residents or staff. Thus, asymptomatic individuals were more likely to be tested among this population. As more and more countries conducted expanded screening, studies concerning the percentage of asymptomatic infections among the general population would increase in the future.

In this study, the pooled percentage of asymptomatic infections among the confirmed population was 40.50%. The pooled percentage of asymptomatic infections was 40.96% among cohort studies, which was slightly lower than that among cross-sectional studies (44.47%). The patients who developed symptoms later were mistakenly classified as having asymptomatic infection in cross-sectional studies because the observation time was not long enough.¹⁴ Thus, the percentage of asymptomatic infections was lower in cohort studies, because some patients with presymptomatic findings were identified during follow-up. There were limited case series of great interest in the first months of the pandemic; however, these studies mostly traced and tested limited

Includes 29 776 306 tested individuals, among whom 11 516 had asymptomatic infections and 19 884 individuals with confirmed COVID-19, among whom 11 069 had asymptomatic infections. Funnel plot asymmetry indicated possible publication bias.

contacts, which contributed limited value to the evidence of the percentage of asymptomatic infections.¹⁷ Several meta-analyses concerned the percentage of asymptomatic infections among the confirmed population. Chen et al⁵ conducted a meta-analysis that included 104 published studies and preprints before May 13, 2020. They found that the percentage of asymptomatic individuals among those with COVID-19 was 13.34% (95% CI, 10.86%-16.29%). Unlike our study, Chen et al⁵ searched a Chinese database. Thus, the percentage of Chinese studies was higher in their study than in the present study. He et al¹⁴ searched PubMed and Embase before May 20, 2020, and included 41 published studies. More than 50% of the studies were from China, and the pooled percentage of asymptomatic infection was 15.6% (95% CI, 10.1%-23.0%). In our study, we only included published studies. The percentage of countries excluding China was higher than the previous meta-analysis.¹⁴ This might be the reason for the higher percentage of asymptomatic infections found in our study compared with studies conducted by Chen et al⁵ and He et al.¹⁴ Another meta-analysis conducted by Yanes-Lane et al¹⁷ included published studies and preprints before June 22, 2020. After quality assessment, 28 studies were of high or moderate quality and were included in the meta-analysis. The percentage of asymptomatic infection among persons with confirmed COVID-19 varied among different study populations, with the highest observed in obstetric patients (95% [95% CI, 45%-100%]).

In our study, the percentage of asymptomatic infections among the confirmed population was 54.11% in pregnant women and 52.91% in air or cruise travelers. The percentage was 47.53% in nursing home residents or staff. This finding of a high percentage of asymptomatic infections among air or cruise travelers suggests that screening and quarantine on airport arrival is important for reducing community transmissions, especially in countries without local transmission.^{3,25} In addition, we found that the percentage of asymptomatic infections among the tested population was relatively low among community residents. However, the percentage of asymptomatic infection among confirmed individuals was 39.74% in communities. These findings suggest that asymptomatic infections might contribute to the transmission of SARS-CoV-2 within the community. To prevent further transmission in communities, asymptomatic individuals among the general population should be tested. If resources are limited, workers in specific industries such as air transportation should be routinely tested. In addition, we found that approximately one-third of individuals with confirmed COVID-19 were asymptomatic among health care workers or in-hospital patients. Because asymptomatic health care workers might contribute to disease spread in and out of hospitals, surveillance of asymptomatic individuals is important for infection control and transmission reduction in health care settings and community.^{116,117} Meanwhile, hand hygiene and personal protective equipment were necessary for hospital visitors.¹¹⁷ A previous study showed that most asymptomatic patients belong to younger groups,³ which was consistent with the findings of our study. The percentage of asymptomatic infections was higher among groups younger than 39 years than in other age groups, possibly because the young adults were more likely to show only mild or moderate clinical symptoms.⁵ This indicated that young adults who often presented mild or no symptoms were a potential source of transmission in the community.

In the meta-analysis, we included studies published before February 3, 2021, providing the most updated pooled percentage of asymptomatic infections among tested and confirmed populations. We included countries in Africa, Asia, Europe, North America, and South America and estimated the percentage of asymptomatic infections for different populations. Our results could raise awareness among the public and policy makers and provide evidence for prevention strategies.

Limitations

This study has several limitations. First, we did not include preprints and therefore may have missed some relevant studies; however, we thought that the results of published studies were more reliable. Second, some relevant articles written in Chinese may not be included because we did not search Chinese literature databases such as China National Knowledge Infrastructure. Third, most studies did not follow up to identify presymptomatic and covert infections. Future studies should evaluate

JAMA Network Open. 2021;4(12):e2137257. doi:10.1001/jamanetworkopen.2021.37257

the percentage of these 2 types of asymptomatic infection among the confirmed population. Fourth, most studies were conducted in a specific population; thus, our findings might not be generalizable to the general population. Fifth, the heterogeneity between studies was high, which might be related to different study location, period, population, and sample size. Sixth, the Egger regression test suggested potential publication bias in this study. Because studies that did not detect asymptomatic infections were less likely to be published, our pooled percentage of asymptomatic infections might be overestimated.

Conclusions

In this systematic review and meta-analysis, we found that the pooled percentage of asymptomatic SARS-CoV-2 infections among the tested population was 0.25%. Among the confirmed population, 40.50% of individuals had asymptomatic infections. The high percentage of asymptomatic infections highlights the potential transmission risk of asymptomatic infections in communities. Screening for asymptomatic infection is required, especially for countries and regions that have successfully controlled SARS-CoV-2. Asymptomatic infections should be under management similar to that for confirmed infections, including isolating and contact tracing.

ARTICLE INFORMATION

Accepted for Publication: October 8, 2021.

Published: December 14, 2021. doi:10.1001/jamanetworkopen.2021.37257

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2021 Ma Q et al. *JAMA Network Open*.

Corresponding Author: Min Liu, PhD, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Rd, Haidian District, Beijing 100191, China (liumin@bjmu.edu.cn).

Author Affiliations: Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China (Ma, J. Liu, Q. Liu, Kang, Jing, Wu, M. Liu); School of Health Humanities, Peking University, Beijing, China (R. Liu).

Author Contributions: Dr M. Liu had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Drs Ma and J. Liu contributed equally to this study and are co-first authors.

Concept and design: Ma, J. Liu, Jing, M. Liu.

Acquisition, analysis, or interpretation of data: Ma, Q. Liu, Kang, R. Liu, Wu, M. Liu.

Drafting of the manuscript: Ma, Q. Liu, Kang, R. Liu.

Critical revision of the manuscript for important intellectual content: J. Liu, Jing, Wu, M. Liu.

Statistical analysis: Ma, J. Liu, Q. Liu, Jing.

Obtained funding: J. Liu, M. Liu.

Supervision: M. Liu.

Conflict of Interest Disclosures: None reported.

Funding/Support: This work was supported by grants 71934002, 71874003, and 72122001 from the National Natural Science Foundation of China.

Role of the Funder/Sponsor: The sponsor had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

REFERENCES

1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet*. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5

2. World Health Organization. WHO coronavirus disease (COVID-19) dashboard. Accessed January 28, 2021. https://covid19.who.int/

 Kronbichler A, Kresse D, Yoon S, Lee KH, Effenberger M, Shin JI. Asymptomatic patients as a source of COVID-19 infections: a systematic review and meta-analysis. *Int J Infect Dis.* 2020;98:180-186. doi:10.1016/j.ijid.2020. 06.052

4. World Health Organization. Coronavirus disease (COVID-19): how is it transmitted? December 13, 2020. Accessed January 22, 2021. https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted

5. Chen C, Zhu C, Yan D, et al. The epidemiological and radiographical characteristics of asymptomatic infections with the novel coronavirus (COVID-19): a systematic review and meta-analysis. *Int J Infect Dis.* 2021;104:458-464. doi:10.1016/j.ijid.2021.01.017

6. Wilder-Smith A, Chiew CJ, Lee VJ. Can we contain the COVID-19 outbreak with the same measures as for SARS? Lancet Infect Dis. 2020;20(5):e102-e107. doi:10.1016/S1473-3099(20)30129-8

7. Krishnasamy N, Natarajan M, Ramachandran A, et al. Clinical outcomes among asymptomatic or mildly symptomatic COVID-19 patients in an isolation facility in Chennai, India. *Am J Trop Med Hyg.* 2021;104(1):85-90. doi:10.4269/ajtmh.20-1096

8. Ra SH, Lim JS, Kim GU, Kim MJ, Jung J, Kim SH. Upper respiratory viral load in asymptomatic individuals and mildly symptomatic patients with SARS-CoV-2 infection. *Thorax*. 2021;76(1):61-63. doi:10.1136/thoraxjnl-2020-215042

9. He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. *Nat Med.* 2020;26(5):672-675. doi:10.1038/s41591-020-0869-5

10. Bai Y, Yao L, Wei T, et al. Presumed asymptomatic carrier transmission of COVID-19. *JAMA*. 2020;323(14): 1406-1407. doi:10.1001/jama.2020.2565

11. Tong ZD, Tang A, Li KF, et al. Potential presymptomatic transmission of SARS-CoV-2, Zhejiang Province, China, 2020. *Emerg Infect Dis*. 2020;26(5):1052-1054. doi:10.3201/eid2605.200198

12. Arons MM, Hatfield KM, Reddy SC, et al; Public Health-Seattle and King County and CDC COVID-19 Investigation Team. Presymptomatic SARS-CoV-2 infections and transmission in a skilled nursing facility. *N Engl J Med*. 2020;382(22):2081-2090. doi:10.1056/NEJMoa2008457

13. Zhang Y, Muscatello D, Tian Y, et al. Role of presymptomatic transmission of COVID-19: evidence from Beijing, China. J Epidemiol Community Health. 2021;75(1):84-87. doi:10.1136/jech-2020-214635

14. He J, Guo Y, Mao R, Zhang J. Proportion of asymptomatic coronavirus disease 2019: a systematic review and meta-analysis. *J Med Virol*. 2021;93(2):820-830. doi:10.1002/jmv.26326

15. Moola S, Munn Z, Tufanaru C, et al. Chapter 7: Systematic reviews of etiology and risk. In: Aromataris E, Munn Z, eds. JBI Manual for Evidence Synthesis. JBI; 2020. Accessed September 5, 2021. https://jbi-global-wiki.refined.site/space/MANUAL

16. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P. *The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-analyses*. Ottawa Hospital Research Institute; 2011. Accessed September 5, 2021. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

17. Yanes-Lane M, Winters N, Fregonese F, et al. Proportion of asymptomatic infection among COVID-19 positive persons and their transmission potential: a systematic review and meta-analysis. *PLoS One*. 2020;15(11): e0241536. doi:10.1371/journal.pone.0241536

18. DerSimonian R, Laird N. Meta-analysis in clinical trials revisited. *Contemp Clin Trials*. 2015;45(Pt A):139-145. doi:10.1016/j.cct.2015.09.002

19. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ*. 2003;327 (7414):557-560. doi:10.1136/bmj.327.7414.557

20. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ*. 1997;315(7109):629-634. doi:10.1136/bmj.315.7109.629

21. Knapp G, Hartung J. Improved tests for a random effects meta-regression with a single covariate. *Stat Med.* 2003;22(17):2693-2710. doi:10.1002/sim.1482

22. Abdelmoniem R, Fouad R, Shawky S, et al. SARS-CoV-2 infection among asymptomatic healthcare workers of the emergency department in a tertiary care facility. J Clin Virol. 2021;134:104710. doi:10.1016/j.jcv.2020.104710

23. Abeysuriya S, Wasif S, Counihan C, et al. Universal screening for SARS-CoV-2 in pregnant women at term admitted to an East London maternity unit. *Eur J Obstet Gynecol Reprod Biol*. 2020;252:444-446. doi:10.1016/j. ejogrb.2020.07.035

24. Akbarialiabad H, Abdolrahimzadeh Fard H, Abbasi HR, et al. Our experience of trauma management during novel coronovirus 2019 (COVID-19) pandemic in a busy trauma center in southern Iran. *Bull Emerg Trauma*. 2020; 8(3):199-201.

25. Al-Qahtani M, AlAli S, AbdulRahman A, Salman Alsayyad A, Otoom S, Atkin SL. The prevalence of asymptomatic and symptomatic COVID-19 in a cohort of quarantined subjects. *Int J Infect Dis.* 2021;102:285-288. doi:10.1016/j.ijid.2020.10.091

26. Al-Shamsi HO, Coomes EA, Aldhaheri K, Alrawi S. Serial screening for COVID-19 in asymptomatic patients receiving anticancer therapy in the United Arab Emirates. *JAMA Oncol.* 2021;7(1):129-131. doi:10.1001/jamaoncol. 2020.5745

27. Arnold FW, Bishop S, Oppy L, Scott L, Stevenson G. Surveillance testing reveals a significant proportion of hospitalized patients with SARS-CoV-2 are asymptomatic. *Am J Infect Control*. 2021;49(3):281-285. doi:10.1016/j. ajic.2021.01.005

28. Aslam A, Singh J, Robilotti E, et al. SARS CoV-2 surveillance and exposure in the perioperative setting with universal testing and personal protective equipment (PPE) policies. *Clin Infect Dis*. Published online October 22, 2020. doi:10.1093/cid/ciaa1607

29. Bayle C, Cantin D, Vidal JS, et al; APHP COVID 19 research collaboration. Asymptomatic SARS COV-2 carriers among nursing home staff: A source of contamination for residents? *Infect Dis Now*. 2021;51(2):197-200. doi:10. 1016/j.idnow.2020.11.008

30. Bender WR, Hirshberg A, Coutifaris P, Acker AL, Srinivas SK. Universal testing for severe acute respiratory syndrome coronavirus 2 in 2 Philadelphia hospitals: carrier prevalence and symptom development over 2 weeks. *Am J Obstet Gynecol MFM*. 2020;2(4):100226. doi:10.1016/j.ajogmf.2020.100226

31. Bianco A, Buckley AB, Overbey J, et al. Testing of patients and support persons for coronavirus disease 2019 (COVID-19) infection before scheduled deliveries. *Obstet Gynecol*. 2020;136(2):283-287. doi:10.1097/AOG. 0000000000003985

32. Blain H, Rolland Y, Tuaillon E, et al. Efficacy of a test-retest strategy in residents and health care personnel of a nursing home facing a COVID-19 outbreak. *J Am Med Dir Assoc*. 2020;21(7):933-936. doi:10.1016/j.jamda.2020. 06.013

33. Blitz MJ, Rochelson B, Rausch AC, et al. Universal testing for coronavirus disease 2019 in pregnant women admitted for delivery: prevalence of peripartum infection and rate of asymptomatic carriers at four New York hospitals within an integrated healthcare system. *Am J Obstet Gynecol MFM*. 2020;2(3):100169. doi:10.1016/j. ajogmf.2020.100169

34. Blumberg TJ, Adler AC, Lin EE, et al. Universal screening for COVID-19 in children undergoing orthopaedic surgery: a multicenter report. *J Pediatr Orthop*. 2020;40(10):e990-e993. doi:10.1097/BPO. 000000000001657

35. Bosworth A, Whalley C, Poxon C, et al. Rapid implementation and validation of a cold-chain free SARS-CoV-2 diagnostic testing workflow to support surge capacity. *J Clin Virol*. 2020;128:104469. doi:10.1016/j.jcv.2020. 104469

36. Cao S, Gan Y, Wang C, et al. Post-lockdown SARS-CoV-2 nucleic acid screening in nearly ten million residents of Wuhan, China. *Nat Commun*. 2020;11(1):5917. doi:10.1038/s41467-020-19802-w

37. Carroll C, Conway R, O'Donnell D, et al. Routine testing of close contacts of confirmed COVID-19 cases: national COVID-19 contact management programme, Ireland, May to August 2020. *Public Health*. 2021;190:147-151.

38. Cattelan AM, Sasset L, Di Meco E, et al. An integrated strategy for the prevention of SARS-CoV-2 infection in healthcare workers: a prospective observational study. *Int J Environ Res Public Health*. 2020;17(16):E5785. doi:10. 3390/ijerph17165785

39. Cloutier L, Merindol N, Pépin G, et al. Asymptomatic carriers of COVID-19 in a confined adult community population in Quebec: a cross-sectional study. *Am J Infect Control*. 2021;49(1):120-122. doi:10.1016/j.ajic.2020. 08.015

40. Corcorran MA, Olin S, Rani G, et al. Prolonged persistence of PCR-detectable virus during an outbreak of SARS-CoV-2 in an inpatient geriatric psychiatry unit in King County, Washington. *Am J Infect Control*. 2021;49(3): 293-298.

41. Deng ZQ, Xia W, Fan YB, et al. Analysis on transmission chain of a cluster epidemic of COVID-19, Nanchang [in Chinese]. *Zhonghua Liu Xing Bing Xue Za Zhi*. 2020;41(9):1420-1423.

42. Dora AV, Winnett A, Jatt LP, et al. Universal and serial laboratory testing for SARS-CoV-2 at a long-term care skilled nursing facility for veterans: Los Angeles, California, 2020. *MMWR Morb Mortal Wkly Rep.* 2020;69(21): 651-655. doi:10.15585/mmwr.mm6921e1

43. Duan P, Deng ZQ, Pan ZY, Wang YP. Safety considerations during return to work in the context of stable COVID-19 epidemic control: an analysis of health screening results of all returned staff from a hospital. *Epidemiol Infect*. 2020;148:e214. doi:10.1017/S0950268820002150

44. Figueiredo R, Tavares S, Moucho M, Ramalho C. Systematic screening for SARS-CoV-2 in pregnant women admitted for delivery in a Portuguese maternity. *J Perinat Med*. 2020;48(9):977-980. doi:10.1515/jpm-2020-0387

45. Goldfarb IT, Diouf K, Barth WH, et al. Universal SARS-CoV-2 testing on admission to the labor and delivery unit: low prevalence among asymptomatic obstetric patients. *Infect Control Hosp Epidemiol*. 2020;41(9):1095-1096. doi:10.1017/ice.2020.255

46. Graham NSN, Junghans C, Downes R, et al. SARS-CoV-2 infection, clinical features and outcome of COVID-19 in United Kingdom nursing homes. *J Infect*. 2020;81(3):411-419. doi:10.1016/j.jinf.2020.05.073

47. Grechukhina O, Greenberg V, Lundsberg LS, et al. Coronavirus disease 2019 pregnancy outcomes in a racially and ethnically diverse population. *Am J Obstet Gynecol MFM*. 2020;2(4)(suppl):100246. doi:10.1016/j.ajogmf. 2020.100246

48. Gruskay JA, Dvorzhinskiy A, Konnaris MA, et al. Universal testing for COVID-19 in essential orthopaedic surgery reveals a high percentage of asymptomatic infections. *J Bone Joint Surg Am*. 2020;102(16):1379-1388. doi:10.2106/JBJS.20.01053

49. Han X, Wei X, Alwalid O, et al. Severe acute respiratory syndrome coronavirus 2 among asymptomatic workers screened for work resumption, China. *Emerg Infect Dis*. 2020;26(9):2265-2267. doi:10.3201/eid2609.201848

50. Harada S, Uno S, Ando T, et al. Control of a nosocomial outbreak of COVID-19 in a university hospital. *Open Forum Infect Dis*. 2020;7(12):a512. doi:10.1093/ofid/ofaa512

51. Hcini N, Maamri F, Picone O, et al. Maternal, fetal and neonatal outcomes of large series of SARS-CoV-2 positive pregnancies in peripartum period: a single-center prospective comparative study. *Eur J Obstet Gynecol Reprod Biol.* 2021;257:11-18. doi:10.1016/j.ejogrb.2020.11.068

52. Hoxha A, Wyndham-Thomas C, Klamer S, et al. Asymptomatic SARS-CoV-2 infection in Belgian long-term care facilities. *Lancet Infect Dis.* 2021;21(4):e67. doi:10.1016/S1473-3099(20)30560-0

53. Hung IFN, Cheng VCC, Li X, et al. SARS-CoV-2 shedding and seroconversion among passengers quarantined after disembarking a cruise ship: a case series. *Lancet Infect Dis.* 2020;20(9):1051-1060. doi:10.1016/S1473-3099 (20)30364-9

54. Ibrahim F, Natasha A, Saharman YR, Sudarmono P. Preliminary report of COVID-19 testing: experience of the clinical microbiology laboratory Universitas Indonesia, Jakarta, Indonesia. *New Microbes New Infect*. 2020;37: 100733. doi:10.1016/j.nmni.2020.100733

55. Kennelly SP, Dyer AH, Noonan C, et al. Asymptomatic carriage rates and case-fatality of SARS-CoV-2 infection in residents and staff in Irish nursing homes. *Age Ageing*. 2021;50(1):49-54. doi:10.1093/ageing/afaa220

56. Kessler T, Wiebe J, Graf T, Schunkert H, Kastrati A, Sager HB. SARS-CoV-2 infection in asymptomatic patients hospitalized for cardiac emergencies: implications for patient management. *Front Cardiovasc Med*. 2020;7: 599299. doi:10.3389/fcvm.2020.599299

57. Kimball A, Hatfield KM, Arons M, et al; Public Health-Seattle & King County; CDC COVID-19 Investigation Team. Asymptomatic and presymptomatic SARS-CoV-2 infections in residents of a long-term care skilled nursing facility: King County, Washington, March 2020. *MMWR Morb Mortal Wkly Rep.* 2020;69(13):377-381. doi:10.15585/mmwr. mm6913e1

58. Kirshblum SC, DeLauter G, Lopreiato MC, et al. Screening testing for SARS-CoV-2 upon admission to rehabilitation hospitals in a high COVID-19 prevalence community. *PM R*. 2020;12(10):1009-1014. doi:10.1002/pmrj.12454

59. Krüger S, Leskien M, Schuller P, et al. Performance and feasibility of universal PCR admission screening for SARS-CoV-2 in a German tertiary care hospital. *J Med Virol*. 2021;93(5):2890-2898. doi:10.1002/jmv.26770

60. Kwon YS, Park SH, Kim HJ, et al. Screening clinic for coronavirus disease 2019 to prevent intrahospital spread in Daegu, Korea: a single-center report. *J Korean Med Sci*. 2020;35(26):e246. doi:10.3346/jkms.2020.35.e246

61. LaCourse SM, Kachikis A, Blain M, et al. Low prevalence of SARS-CoV-2 among pregnant and postpartum patients with universal screening in Seattle, Washington. *Clin Infect Dis.* 2021;72(5):869-872. doi:10.1093/cid/ciaa675

62. Ladhani SN, Chow JY, Janarthanan R, et al. Investigation of SARS-CoV-2 outbreaks in six care homes in London, April 2020. *EclinicalMedicine*. 2020;26:100533. doi:10.1016/j.eclinm.2020.100533

63. Lan FY, Suharlim C, Kales SN, Yang J. Association between SARS-CoV-2 infection, exposure risk and mental health among a cohort of essential retail workers in the USA. *Occup Environ Med*. 2021;78(4):237-243.

64. Lavezzo E, Franchin E, Ciavarella C, et al; Imperial College COVID-19 Response Team; Imperial College COVID-19 Response Team. Suppression of a SARS-CoV-2 outbreak in the Italian municipality of Vo'. *Nature*. 2020; 584(7821):425-429. doi:10.1038/s41586-020-2488-1

65. Livingston G, Rostamipour H, Gallagher P, et al. Prevalence, management, and outcomes of SARS-CoV-2 infections in older people and those with dementia in mental health wards in London, UK: a retrospective observational study. *Lancet Psychiatry*. 2020;7(12):1054-1063. doi:10.1016/S2215-0366(20)30434-X

66. Lombardi A, Consonni D, Carugno M, et al. Characteristics of 1573 healthcare workers who underwent nasopharyngeal swab testing for SARS-CoV-2 in Milan, Lombardy, Italy. *Clin Microbiol Infect*. 2020;26(10):1413.e9-1413.e13. doi:10.1016/j.cmi.2020.06.013

67. Ly TDA, Zanini D, Laforge V, et al. Pattern of SARS-CoV-2 infection among dependant elderly residents living in long-term care facilities in Marseille, France, March-June 2020. *Int J Antimicrob Agents*. 2020;56(6):106219. doi:10.1016/j.ijantimicag.2020.106219

68. Lytras T, Dellis G, Flountzi A, et al. High prevalence of SARS-CoV-2 infection in repatriation flights to Greece from three European countries. *J Travel Med*. 2020;27(3):taaa054. doi:10.1093/jtm/taaa054

69. Maechler F, Gertler M, Hermes J, et al. Epidemiological and clinical characteristics of SARS-CoV-2 infections at a testing site in Berlin, Germany, March and April 2020-a cross-sectional study. *Clin Microbiol Infect*. 2020;26(12): 1685.e7-1685.e12. doi:10.1016/j.cmi.2020.08.017

70. Marossy A, Rakowicz S, Bhan A, et al. A study of universal severe acute respiratory syndrome coronavirus 2 RNA testing among residents and staff in a large group of care homes in South London. *J Infect Dis.* 2021;223(3): 381-388. doi:10.1093/infdis/jiaa565

71. Marschner S, Corradini S, Rauch J, et al. SARS-CoV-2 prevalence in an asymptomatic cancer cohort: results and consequences for clinical routine. *Radiat Oncol.* 2020;15(1):165. doi:10.1186/s13014-020-01609-0

72. Martinez-Fierro ML, Ríos-Jasso J, Garza-Veloz I, et al. The role of close contacts of COVID-19 patients in the SARS-CoV-2 transmission: an emphasis on the percentage of nonevaluated positivity in Mexico. *Am J Infect Control*. 2021;49(1):15-20. doi:10.1016/j.ajic.2020.10.002

73. Massarotti C, Adriano M, Cagnacci A, et al. Asymptomatic SARS-CoV-2 infections in pregnant patients in an Italian city during the complete lockdown. *J Med Virol*. 2021;93(3):1758-1760. doi:10.1002/jmv.26458

74. Mattar S, Martinez-Bravo C, Rivero R, et al. Epidemiological and viral features of a cohort of SARS-CoV-2 symptomatic and asymptomatic individuals in an area of the Colombian Caribbean. *Ann Clin Microbiol Antimicrob*. 2020;19(1):58. doi:10.1186/s12941-020-00397-5

75. Menting T, Krause K, Benz-Tettey F, et al. Low-threshold SARS-CoV-2 testing facility for hospital staff: prevention of COVID-19 outbreaks? *Int J Hyg Environ Health*. 2021;231:113653. doi:10.1016/j.ijheb.2020.113653

76. Migueres M, Mengelle C, Dimeglio C, et al. Saliva sampling for diagnosing SARS-CoV-2 infections in symptomatic patients and asymptomatic carriers. *J Clin Virol*. 2020;130:104580. doi:10.1016/j.jcv.2020.104580

77. Milani GP, Montomoli E, Bollati V, et al; UNICORN Consortium investigators. SARS-CoV-2 infection among asymptomatic homebound subjects in Milan, Italy. *Eur J Intern Med*. 2020;78:161-163. doi:10.1016/j.ejim.2020. 06.010

78. Nishiura H, Kobayashi T, Miyama T, et al. Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19). *Int J Infect Dis*. 2020;94:154-155. doi:10.1016/j.ijid.2020.03.020

79. Ochiai D, Kasuga Y, Iida M, Ikenoue S, Tanaka M. Universal screening for SARS-CoV-2 in asymptomatic obstetric patients in Tokyo, Japan. *Int J Gynaecol Obstet*. 2020;150(2):268-269. doi:10.1002/ijgo.13252

80. Olalla J, Correa AM, Martín-Escalante MD, et al; ROBLE group. Search for asymptomatic carriers of SARS-CoV-2 in healthcare workers during the pandemic: a Spanish experience. *QJM*. 2020;hcaa238.

81. Olmos C, Campaña G, Monreal V, et al. SARS-CoV-2 infection in asymptomatic healthcare workers at a clinic in Chile. *PLoS One*. 2021;16(1):e0245913. doi:10.1371/journal.pone.0245913

82. Park SY, Kim YM, Yi S, et al. Coronavirus disease outbreak in call center, South Korea. *Emerg Infect Dis*. 2020; 26(8):1666-1670. doi:10.3201/eid2608.201274

83. Park JH, Jang JH, Lee K, Yoo SJ, Shin H. COVID-19 outbreak and presymptomatic transmission in pilgrim travelers who returned to Korea from Israel. *J Korean Med Sci*. 2020;35(48):e424. doi:10.3346/jkms.2020. 35.e424

84. Patel MC, Chaisson LH, Borgetti S, et al. Asymptomatic SARS-CoV-2 infection and COVID-19 mortality during an outbreak investigation in a skilled nursing facility. *Clin Infect Dis*. 2020;71(11):2920-2926. doi:10.1093/cid/ciaa763

85. Pavli A, Smeti P, Hadjianastasiou S, et al. In-flight transmission of COVID-19 on flights to Greece: an epidemiological analysis. *Travel Med Infect Dis*. 2020;38:101882. doi:10.1016/j.tmaid.2020.101882

86. Petersen I, Phillips A. Three quarters of people with SARS-CoV-2 infection are asymptomatic: analysis of English household survey data. *Clin Epidemiol*. 2020;12:1039-1043. doi:10.2147/CLEP.S276825

87. Puckett Y, Wilke L, Weber S, Parkes A, LoConte NK. Low rate of SARS-CoV-2 infection in adults with active cancer diagnosis in a nonendemic region in the United States. *WMJ*. 2020;119(4):286-288.

88. Ralli M, Morrone A, Arcangeli A, Ercoli L. Asymptomatic patients as a source of transmission of COVID-19 in homeless shelters. *Int J Infect Dis.* 2021;103:243-245. doi:10.1016/j.ijid.2020.12.031

89. Rashid-Abdi M, Krifors A, Sälléber A, Eriksson J, Månsson E. Low rate of COVID-19 seroconversion in healthcare workers at a Department of Infectious Diseases in Sweden during the later phase of the first wave: a prospective longitudinal seroepidemiological study. *Infect Dis (Lond)*. 2021;53(3):169-175. doi:10.1080/ 23744235.2020.1849787

90. Ren R, Zhang Y, Li Q, et al. Asymptomatic SARS-CoV-2 infections among persons entering China from April 16 to October 12, 2020. *JAMA*. 2021;325(5):489-492. doi:10.1001/jama.2020.23942

91. Rincón A, Moreso F, López-Herradón A, et al. The keys to control a COVID-19 outbreak in a haemodialysis unit. *Clin Kidney J.* 2020;13(4):542-549. doi:10.1093/ckj/sfaa119

92. Roxby AC, Greninger AL, Hatfield KM, et al. Outbreak investigation of COVID-19 among residents and staff of an independent and assisted living community for older adults in Seattle, Washington. *JAMA Intern Med.* 2020; 180(8):1101-1105. doi:10.1001/jamainternmed.2020.2233

93. Sacco G, Foucault G, Briere O, Annweiler C. COVID-19 in seniors: findings and lessons from mass screening in a nursing home. *Maturitas*. 2020;141:46-52. doi:10.1016/j.maturitas.2020.06.023

94. Santos EJF, Ferreira RJO, Batista R, et al. Health care workers not in the frontline are more frequently carriers of coronavirus disease 2019: the experience of a tertiary Portuguese hospital. *Infect Prev Pract*. 2020;2(4): 100099. doi:10.1016/j.infpip.2020.100099

95. Scheier T, Schibli A, Eich G, et al. Universal admission screening for SARS-CoV-2 infections among hospitalized patients, Switzerland, 2020. *Emerg Infect Dis.* 2021;27(2):404-410. doi:10.3201/eid2702.202318

96. Shah AS, Walkoff LA, Kuzo RS, et al. The utility of chest computed tomography (CT) and RT-PCR screening of asymptomatic patients for SARS-CoV-2 prior to semiurgent or urgent hospital procedures. *Infect Control Hosp Epidemiol*. 2020;41(12):1375-1377. doi:10.1017/ice.2020.331

97. Shi SM, Bakaev I, Chen H, Travison TG, Berry SD. Risk factors, presentation, and course of coronavirus disease 2019 in a large, academic long-term care facility. *J Am Med Dir Assoc*. 2020;21(10):1378-1383.e1. doi:10.1016/j. jamda.2020.08.027

98. Singer JS, Cheng EM, Murad DA, et al. Low prevalence (0.13%) of COVID-19 infection in asymptomatic pre-operative/pre-procedure patients at a large, academic medical center informs approaches to perioperative care. *Surgery*. 2020;168(6):980-986. doi:10.1016/j.surg.2020.07.048

99. Tang H, Tian JB, Dong JW, et al. Serologic detection of SARS-CoV-2 infections in hemodialysis centers: a multicenter retrospective study in Wuhan, China. *Am J Kidney Dis.* 2020;76(4):490-499.e1. doi:10.1053/j.ajkd. 2020.06.008

100. Tang O, Bigelow BF, Sheikh F, et al. Outcomes of nursing home COVID-19 patients by initial symptoms and comorbidity: results of universal testing of 1970 residents. *J Am Med Dir Assoc*. 2020;21(12):1767-1773.e1. doi:10. 1016/j.jamda.2020.10.011

101. Temkin E; Healthcare Worker COVID-19 Surveillance Working Group. Extremely low prevalence of asymptomatic COVID-19 among healthcare workers caring for COVID-19 patients in Israeli hospitals: a cross-sectional study. *Clin Microbiol Infect*. 2021;27(1):130.e1-130.e4. doi:10.1016/j.cmi.2020.09.040

102. Trahan MJ, Mitric C, Malhamé I, Abenhaim HA. Screening and testing pregnant patients for SARS-CoV-2: firstwave experience of a designated COVID-19 hospitalization centre in Montreal. *J Obstet Gynaecol Canada*. 2021;43 (5):571-575. doi:10.1016/j.jogc.2020.11.001

103. Tsou TP, Chen WC, Huang ASE, Chang SC; Taiwan COVID-19 Outbreak Investigation Team. Epidemiology of the first 100 cases of COVID-19 in Taiwan and its implications on outbreak control. *J Formos Med Assoc*. 2020;119 (11):1601-1607. doi:10.1016/j.jfma.2020.07.015

104. van Buul LW, van den Besselaar JH, Koene FMHPH, Buurman BM, Hertogh CMPM; COVID-19 NH-Study Group; COVID-19 NH-Study Group. Asymptomatic cases and limited transmission of SARS-CoV-2 in residents and healthcare workers in three Dutch nursing homes. *Gerontol Geriatr Med*. 2020;6:2333721420982800. doi:10. 1177/2333721420982800

105. Varnell C Jr, Harshman LA, Smith L, et al. COVID-19 in pediatric kidney transplantation: the Improving Renal Outcomes Collaborative. *Am J Transplant*. 2021;21(8):2740-2748. doi:10.1111/ajt.16501

106. Wadhwa A, Fisher KA, Silver R, et al. Identification of presymptomatic and asymptomatic cases using cohortbased testing approaches at a large correctional facility: Chicago, Illinois, USA, May 2020. *Clin Infect Dis*. 2021;72 (5):e128-e135. doi:10.1093/cid/ciaa1802

107. Wi YM, Lim SJ, Kim SH, et al. Response system for and epidemiological features of COVID-19 in Gyeongsangnam-do Province in South Korea. *Clin Infect Dis.* 2021;72(4):661-667.

108. Wood J, Datta D, Hudson BL, et al. Prevalence of asymptomatic SARS-CoV-2 infection in children and adults in Marion County, Indiana. *Cureus*. 2020;12(8):e9794. doi:10.7759/cureus.9794

109. Yamahata Y, Shibata A. Preparation for quarantine on the cruise ship Diamond Princess in Japan due to COVID-19. *JMIR Public Health Surveill*. 2020;6(2):e18821. doi:10.2196/18821

110. Yassa M, Yirmibes C, Cavusoglu G, et al. Outcomes of universal SARS-CoV-2 testing program in pregnant women admitted to hospital and the adjuvant role of lung ultrasound in screening: a prospective cohort study. *J Matern Fetal Neonatal Med*. 2020;33(22):3820-3826. doi:10.1080/14767058.2020.1798398

111. Yau K, Muller MP, Lin M, et al. COVID-19 outbreak in an urban hemodialysis unit. *Am J Kidney Dis*. 2020;76(5): 690-695.e1. doi:10.1053/j.ajkd.2020.07.001

112. Yousaf AR, Duca LM, Chu V, et al. A prospective cohort study in nonhospitalized household contacts with severe acute respiratory syndrome coronavirus 2 infection: symptom profiles and symptom change over time. *Clin Infect Dis.* 2021;73(7):e1841-e1849. doi:10.1093/cid/ciaa1072

113. Zhang T, Wu HT, Wang LH, Yang WZ. Scenario-based study of medical resource requirement rapid assessment under the COVID-19 pandemic [in Chinese]. *Zhonghua Liu Xing Bing Xue Za Zhi*. 2020;41(0):E059. doi:10.3760/cma.j.cn112338-20200401-00488

114. Zhang S, Guo M, Wu F, et al. Factors associated with asymptomatic infection in health-care workers with severe acute respiratory syndrome coronavirus 2 infection in Wuhan, China: a multicentre retrospective cohort study. *Clin Microbiol Infect*. 2020;26(12):1670-1675. doi:10.1016/j.cmi.2020.08.038

115. Zhao D, Wang M, Wang M, et al. Asymptomatic infection by SARS-CoV-2 in healthcare workers: a study in a large teaching hospital in Wuhan, China. *Int J Infect Dis*. 2020;99:219-225. doi:10.1016/j.ijid.2020.07.082

116. Black JRM, Bailey C, Przewrocka J, Dijkstra KK, Swanton C. COVID-19: the case for health-care worker screening to prevent hospital transmission. *Lancet*. 2020;395(10234):1418-1420. doi:10.1016/S0140-6736(20) 30917-X

117. Passarelli VC, Faico-Filho K, Moreira LVL, et al. Asymptomatic COVID-19 in hospital visitors: the underestimated potential of viral shedding. *Int J Infect Dis*. 2021;102:412-414. doi:10.1016/j.ijid.2020.10.057

SUPPLEMENT.

eMethods 1. Search Strategies

eMethods 2. Study Quality Assessments

eFigure 1. Percentage of Asymptomatic Cases Among the Tested Population

eFigure 2. Percentage of Asymptomatic Cases Among the Confirmed Population

eFigure 3. Percentage of Asymptomatic Cases Among the Tested Population by Subgroups, Using the Knapp-Hartung Adjustments

eFigure 4. Percentage of Asymptomatic Cases Among the Confirmed Population by Subgroups, Using the Knapp-Hartung Adjustments